Ядро линукс что это такое

Ядро Linux

Что такое ядро операционной системы

Ядро является главной частью любой операционной системы. Существует точка зрения, которая понятие операционной системы приравнивает к ядру. Есть точка зрения, когда в понятие операционной системы включают как ее ядро, так и системные программы, позволяющие пользователю обращаться через ядро к аппаратным ресурсам.

Так что же такое ядро ОС и каковы его функции? Как известно, компьютер – не только система аппаратного обеспечения (железа), но и набор работающего на нем программного обеспечения. Чтобы второе могло эффективно работать на первом, нужна более низкоуровневая программа, скрывающая сложности работы с железом и предоставляющая обычным программам и пользователям удобный для них интерфейс.

Железо говорит на языке сигналов, регистров, секторов, переводов головок. Программам все это не надо. Они говорят на языке «записать, прочитать, сложить, вычесть . «. Специальной программой, обеспечивающей остальным простой и понятный интерфейс для работы на имеющемся оборудовании, является ядро операционной системы. Однако создание виртуальной машины – не единственная функция ядра.

Представим себе, что ядра нет, а каждая запущенная программа сама обращается к железу и обрабатывает сигналы от него. Вроде бы ничего страшного, кроме дублирования кода в каждой такой программе. Но на компьютере одновременно работает множество программ. Как они будут «договариваться» между собой о совместном использовании общего аппаратного обеспечения?

Конечно, они могут встать в очередь, и сначала одна программа выполнится полностью, затем другая. Однако одни программы должны работать постоянно в фоновом режиме, другие – могут долго ожидать ввода или вывода, третьи – должны получать данные из другой работающей программы. Поэтому функция оптимального распределения аппаратных ресурсов возлагается на ядро. Оно организует как бы параллельную работу множества программ, играет роль менеджера.

Ядро операционной системы – это тоже программа, написанная на том или ином языке программирования и скомпилированная в исполняемый файл. Однако, в отличии от других программ, ядро всегда загружается первым и потом постоянно «сидит» в определенной области оперативной памяти. То есть это программа, которая всегда находится в запущенном состоянии и взаимодействует, с одной стороны, с железом, а с другой – с системными и пользовательскими программами.

В коде ядра особо выделяют драйверы устройств. Драйвер – это программный код, функция которого заключается в предоставлении возможности использовать определенное железо (например, видеокарту). Причем конкретный драйвер не всегда загружается в память вместе с остальной частью ядра. Он туда грузится, лишь когда возникает потребность в ресурсах устройства. Так экономится память, но в ущерб скорости.

Выделяют операционные системы на монолитном ядре и микроядре, а также разные промежуточные варианты. Монолитное ядро проще и быстрее работает, так как в памяти всегда находится почти весь код. Микроядро меньше, сложнее, работает медленнее, однако нередко считается более передовым из-за легкости подключения новых частей кода. Микроядро, находясь в памяти, организует взаимодействие между другими частями кода операционной системы, которые являются самостоятельными программами (см. пример выше про загрузку драйверов).

Ядра Unix-подобных систем

Ядро Unix являлось первой практической реализацией новых идей и открытий 60-70-х годов XX века в области создания операционных систем.

Unix имеет простое монолитное ядро, в котором почти все представляется в виде файлов. Настройки хранятся в текстовых файлах, оборудование также имеет файловый интерфейс. Unix была написана на языке C, и это сделало ее переносимой с одной аппаратной платформы на другую. В Unix были впервые реализованы так называемые многозадачность и многопоточность, виртуальная память и многое другое.

В 80-х годах Unix-системы начали множится и видоизменяться. Некоторые умы вовремя спохватились и создали специальные стандарты, обеспечивающие совместимость систем. Это значит, что программа, написанная для одной Unix-подобной системы, должна работать в другой. Стандарты назвали POSIX.

Особенности ядра Linux

Обычно конечные пользователи имеют дело с дистрибутивами Linux, которые незначительно отличаются между собой, в том числе по компонентам ядра (например, наличию/отсутствию определенных драйверов). Однако ядро в своей основе все-равно остается ядром Linux, его исходники предоставляет проект https://www.kernel.org/. Это совместный проект, к нему может присоединится каждый программист. Основным руководителем остается Линус Торвальдс.

С технической точки зрения, Linux – это ядро, а не операционная система. Linux + программы из проекта GNU рождают операционную систему GNU/Linux. Однако ее тоже не существует в чистом виде. Разработчики дистрибутивов дорабатывают на свой лад GNU/Linux, после чего получаются различные операционные системы-дистрибутивы. У каждого дистрибутива есть собственное имя (Ubuntu, Fedora и т. п.). Однако в основе всех этих систем лежит ядро Linux, поэтому все они принадлежат одному семейству Linux-систем.

Читайте также  Как вставить цветной картридж на hp

Ядро Linux начал разрабатывать в 1991 году Линус Торвальдс. В дальнейшем оно развивалось и совершенствовалось многими людьми. Ядро Linux выпускается под лицензией GNU GPL.

Ядро Linux Unix-подобно, так как заимствовало идеи, заложенные в Unix, соответствует стандартам POSIX, а также по большей части написано на языке С.

У Linux монолитное ядро. Однако некоторые идеи микроядерной архитектуры тут также используются. Так драйверы устройств могут быть представлены в виде модулей и загружаться по требованию, а не при загрузки всего ядра.

Ядро выпускается в виде стабильных и разрабатываемых версий. В стабильных обычно исправлены ошибки, добавлены новые драйверы устройств. До недавнего времени четное второе число в названии ядра, говорило, что оно стабильно. Нечетное число обозначало разрабатываемую нестабильную версию. В 2011 году от такого подхода к нумерации версий отказались.

Опытные пользователи дистрибутивов Linux нередко сами скачивают и устанавливают себе новое ядро. Для этого они сначала распаковывают исходные коды, затем выполняют конфигурацию, потом компилируют, размещают в загрузочном каталоге и изменяют настройки загрузчика.

Конфигурируют ядро с целью включения, отключения или компиляции в виде модуля какого-либо драйвера или функции. Другими словами, «ядро под себя» не будет содержать лишних драйверов для оборудования, которого нет.

Курс с ответами к заданиям и дополнительными уроками:
android-приложение, pdf-версия.

Источник

Что такое ядро Linux

Ядро Linux за авторством Линуса Торвальдса недавно отметило юбилей, вот уже три десятилетия оно используется в компьютерах по всему миру. Благодаря тому, что оно перенесено на множество платформ, его можно встретить практически везде, в персональных компьютерах, смартфонах, носимой электронике, бытовой технике и сетевых устройствах.

Так что же делает ядро Linux и почему оно так востребовано? Мы рассмторим архитектуру ядра, его основные задачи и интерфейсы. Это поможет понять его преимущества и недостатки.

Что такое ядро Linux

1. На чём написано ядро

Несмотря на то, что ассемблерный код позволяет достичь наилучшей производительности, его возможности весьма ограничены, поэтому большая часть кода написана на языке C, его доля достигает 98%. На ассемблере написаны только небольшие вставки, повышающие производительность, архитектурно-зависимые функции и загрузчик.

2. Архитектура ядра

Уровень доступа к ресурсам компьютера зависит от того, какое ядро использует операционная система. Привилегии ядра выше остальных приложений, а работает оно в едином адресном пространстве. В зависимости от того, сколько задач выполняется на уровне ядра, различают несколько типов ядер. Самые популярные – это монолитное (Linux), микроядро (macOS) и гибридное (Windows).

Ядро Linux монолитное, большая его часть хранится в одном файле. Однако, это не признак монолитного ядра, модули вполне могут храниться отдельно. Основная его особенность заключается в том, что оно обрабатывает все процессы, кроме пользовательских приложений. То есть управление процессами и памятью, драйверы, виртуальная файловая система, сетевой стек и многое другое – это всё заботы ядра, которые к тому же имеют самый высокий уровень доступа к аппаратной части компьютера.

Однако, это не означает то, что пользовательские приложения не могут выполнять схожие функции. Например, система инициализации Systemd помимо прочего выстраивает иерархию процессов поверх групп ядра cgroups, а демоны, вроде PulseAudio, контролируют работу устройств, расширяя функциональность драйверов.

Также стоит понимать, что ядро хоть и монолитное, но состоит из внутренних модулей, которые загружаются только по необходимости, а не все сразу. Некоторые модули хранятся отдельно от ядра, в основном это дополнительные драйверы устройств.

Интерфейсы, имена переменных и структура каталогов системы определяются стандартами POSIX, что делает Linux UNIX-подобной системой. Линус Торвальдс, создатель ядра, выбрал UNIX по той причине, что имелась база приложений, необходимых для функционирования операционной системы, утилиты GNU. Однако, он не разделяет идеи философии UNIX, одна программа – одно действие, текстовый вывод информации как универсальный интерфейс. По его мнению они не отражают запросы современных пользователей.

3. Что делает ядро

Как было сказано ранее, у монолитного ядра самый широкий спектр задач. На верхнем уровне ядро обрабатывает поступающие системные вызовы, которые являются интерфейсом между ядром и пользовательскими приложениями. На нижнем уровне ядро обрабатывает аппаратные прерывания, сигналы, поступающие от периферии, процессора, памяти и так далее.

На обработке прерываний задачи ядра не заканчиваются, оно содержит в себе драйверы устройств. Драйверы нужны для того, чтобы обработать поступающие с устройств сигналы, а команды приложений перевести в машинный код.

Драйверы занимают большую часть ядра. Некоторые из них представлены сразу в виде бинарных файлов, что противоречит идеям фонда СПО. Версия ядра без закрытых драйверов называется Linux-libre, на практике его использование крайне затруднительно, так как собрать компьютер на основе комплектующих только с открытыми драйверами у вас едва ли получится.

Читайте также  Установить линукс минт на uefi

Остальные задачи ядра – это работа с абстракциями. Например, планировщик создаёт виртуальные потоки, менеджер памяти выделяет и изолирует часть оперативной памяти под процесс, виртуальная файловая система создаёт единое пространство для хранения файлов, а сетевой модуль создаёт сокеты. Это одно из условий обеспечения высокого уровня безопасности, иначе одна программа могла бы беспрепятственно взять конфиденциальные данные из другой, например, ключи шифрования.

Система межпроцессного взаимодействия следит за тем, чтобы не возникало конфликтов при обращении к одним и тем же ресурсам компьютера, а также обеспечивает обмен данными между процессами.

Со стороны пользовательских приложений всё это выглядит как настоящее оборудование, с той лишь разницей, что общение с процессором и памятью происходит не напрямую, а с помощью системных вызовов. Для периферийных устройств имеются символьные и блочные ссылки в каталоге /dev, последние отличает то, что ни работают с блоками фиксированного размера.

Несмотря на то, что ядро контролирует все процессы, само по себе оно ничего не делает, ему нужны пользовательские программы и их процессы. Среди базовых приложений стоит отметить утилиты проекта GNU, без них не обходится ни один дистрибутив Linux. Например, командная оболочка Bash позволит вам вводить команды в консоли.

4. Версии ядра

Запись версии ядра можно представить в виде: A.B.C-D.

  • A – это версия ядра, изначально планировалось повышать номер только после значительной переработки ядра, но сейчас это делают после достаточного количества правок и нововведений примерно два раза за десятилетие.
  • B – это ревизия ядра, обновление происходит каждые 2-3 месяца. Некоторые из них получают долгосрочную поддержку (LTS – long term support). Последним таким ядром стало 5.10. Каждая ревизия имеет большой список изменений, которые сначала проверяют тестировщики.
  • C и D отвечают за небольшие правки в коде ядра. С увеличивается в том случае, если были обновлены драйверы устройств, а D – когда вышел очередной патч безопасности. Эти номера могут меняться практически каждый день.

Узнать версию ядра можно с помощью команды:

5. Где хранятся файлы ядра

Файлы ядра хранятся в каталоге /boot. Непосредственно само ядро находится в запакованном виде в файле vmlinuz, где z как раз и указывает на то, что ядро сжато для экономии места. Файл initrd.img – это первичная файловая система, которая монтируется перед тем, как подключить реальные накопители к виртуальной файловой системе VFS. Там же содержатся дополнительные модули ядра, поэтому этот файл может быть больше самого ядра. В файле system.map можно найти адреса функций и процедур ядра, что будет полезно при отладке.

Выводы

Подведём итоги. Теперь вы знаете что такое ядро Linux. Ядро — это самая привилегированная программа на компьютере. Если говорить конкретно о ядре Linux, то оно монолитное. Иными словами, в режиме ядра работает всё необходимое для управления ресурсами компьютера. В пользовательском режиме также имеются программы для управления, но они лишь расширяют возможности ядра.

Соответствие стандартам POSIX позволило перенести ядро на множество платформ. Но следование философии UNIX во многих аспектах дистрибутивов Linux имеет как плюсы, так и минусы. Простые приложения с выводом в терминал хорошо подходят для серверов, но для домашнего использования такой подход едва ли может привлечь широкие массы.

К примеру, Android использует ядро Linux, но не утилиты GNU и в целом не пытается стать похожим на UNIX, что во многом обеспечило его популярность. Так что ядро – это лишь инструмент, а цели могут быть любыми, от запуска терминала и до создания суперкомпьютеров.

Источник

What is: ядро Linux

Состоящее почти из 20 миллионов строк кода ядро Linux является одним из самых крупных Opensource проектов в мире.

Что такое ядро

Ядро представляет собой нижний уровень программного обеспечения, которое взаимодействует с оборудованием компьютера. Оно отвечает за взаимодействие всех приложений, которые работают в т.н. “пользовательском режиме” с физическим оборудованием и позволяет процессам передавать информацию друг другу с помощью inter-process communication (IPC).

Типы ядер

Имеется три основных типа ядер – монолитные (monolithic), микроядра (microkernel) и гибридные (hybrid).

К примеру Linux является монолитным ядром, тогда как OS X и Windows используют гибридные ядра.

Microkernel

Микроядра занимаются управлением только CPU, памятью и IPC. Практически все остальное в компьютере может рассматриваться как дополнительное оборудование и может обслуживаться в пользовательском режиме. Микроядра имеют большую переносимость, т.к. вам не приходиться беспокоиться если вы задумали сменить видеокарту или даже всю операционную систему – если новая ОС работает с оборудованием так же, как и предыдущее. Микроядра так же требуют меньше дискового простанства и RAM. Кроме того – они могут считаться более безопасными в силу того, что большая часть процессов работает в режиме пользователя и не имеет доступа к критически важным частям ситемы.

  • переносимость
  • меньший размер занимаемой RAM и на жестком диске
  • безопасность
  • в целом система может работать медленнее из-за дополнительных слоев программной абстракции между ядром и оборудованием
  • процессы могут тратить время на ожидание в очереди для получения информации
Читайте также  Hp connection optimizer что такое

Monolithic ядра

Монолитные ядра являются противоположностью микроядрам, так как охватывают не только управление процессором, памятью и IPC – но так же включают в себя драйвера устройсв, управление файловыми системами и системными вызовами. Монолитные ядра имеют преимущество в скорости доступа к оборудованию и работе в многозадачном режиме, так как если программе требуется получить информацию из памяти или от другого процесса – она может получить его напрямую и не тратить время в очереди на ожидание ответа. С другой стороны это вызывает и определенные сложности, так как большее количество процессов работает в режиме ядра, что может привести к краху всей системы из-за проблем с одним из них.

  • более быстрый доступ процессов к оборудованию
  • проще связь между самими процессами
  • проще реализация поддержки оборудования без необходимости установки дополнительных драйверов
  • процессы взаимодействуют быстрее, так как не требуется ожидание в очереди
  • больший объем занимаемой памяти и жесткого диска
  • больше проблем с безопасностью

Гибридные ядра

Гибридные ядра ядра могут сами определять – какую часть выполнять в режиме пользователя, а какую – в режиме ядра. Как правило – в режиме пользователя работают драйвера устройств и системы ввода-вывода, тогда как системные вызовы обслуживаются в режиме ядра. Этот подход сочетает в себе преимущества как монолитных, так и микроядер – однако и требует больше внимания со стороны производителей оборудования, так как работа драйверов зависят от них. Кроме того – этот подход может иметь некоторые проблемы быстродействия, унаследованные от микроядерной архитектуры.

  • разработчик может выбирать что запускать в режиме ядра – а что в режиме пользователя
  • меньший размер по сравнению с монолитными ядрами
  • более гибкое, чем другие типы
  • возможны недостатки в производительности
  • установка драйверов устройств зависит от пользователя и производителя оборудования

Файлы ядра Linux

В большинстве GNU/Linux-систем файлы ядра располагаются в каталоге /boot , например CentOS 6:

Файл с vmlinuz в имени и есть файл ядра. Имя vmlinuz пришло из мира UNIX, в котором c 60-годов файл ядра назывался просто unix . Когда Linus Torvalds начал разработку Linux в 90-х – он назвал его просто linux .

Когда появилась реализация виртуальной памяти – к имени linux была добавлена приставка “ vm ” (virtual memory). Так какое-то время файл ядра назывался просто vmlinux , однако рамзер файла постоянно увеличивался и со временем его стали сжимать а последняя буква в имени была заменена c x на z (zlib compression). Ядро так же зачастую сжимается с помощью LZMA или BZIP2 и некоторые ядра называются просто zImage .

В каталоге /boot так же находятся файлы initrd.img-version (или initramfs-version ), System.map-version и config-version . Файл initrd.img-version используется для первоначальной загрузки системы, во время которой распаковывается и загружается само ядро. Файл System.map используется для управления памятью перед загрузкой смого ядра, а файл config содержит в себе параметры ядра и список модулей для загрузки в ядро во время его компиляции.

Архитектура ядра Linux

Так как ядро Linux является монолитным – оно является самым большим и сложным по сравнению с другими типами ядер. Что бы нивелировать эти недостатки – разработчики ядра добавили возможность работы ядра с модулями, которые могут быть загружены в него во время работы без необходимости перезагрузки всей системы.

Модули ядра Linux

Что если бы Windows изначально содержило в себе все необходимые драйвера, и все что требовалось бы от пользователя – это просто включить некоторые из них?

Именно так и работают модули Linux, которые так же называют Loadable Kernel Module (LKM) и которые жизненно необходимы для того, что бы ядро имело возможность взаимодейтсвовать со всем оборудованием компьютера и при этом не занимать всю его память.

Как правило – модули расширяют возможности ядра для работы с устройствами, файловыми системами и системными вызовами. LKM имеют рсширение файлов .ko :

Благодаря модульной структуре – вы можете настраивать ядро под себя, выбирая только необходимые модули в menuconfig , отредактировав файл /boot/config* или загружая и выгружая модули прямо во время работы с помощью утилит типа modprobe , insmod и rmmod .

Ядро не является чем-то волшебным, но является жизненно необходимым для работы любого компьютера. Ядро Linux отличается от ядер в Windows или OS X системах, так как включает в себя драйвера на уровне ядра системы и поддерживает многие возможности “из коробки”.

Источник

Mac OS X Hints
Adblock
detector